

Evacuation and Resilience Practice and Research

Brian Wolshon Louisiana State University

Gulf Coast Center for Evacuation and Transportation Resiliency

Making Cities Resilient Exchange

February 25, 2015

What is Disaster Resilience?

- The term "resilience" means the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions*
- In the context of community resilience, the emphasis is not solely on mitigating risk, but implementing measures to ensure that the community recovers to normal, or near normal function, in a reasonable timeframe.

*As defined in Presidential Policy Directive 21.

Resilience Concept

Maintain acceptable levels of functionality during and after disruptive events

Recover full functionality within a specified period of time

Attributes of Resilience

- Functionality Resilience should be based on the ability of social systems to resume function within a prescribed period of time following an expected event. Buildings and infrastructure must be functional to support these social systems.
- Interdependence Resilience must consider the interdependence of buildings and infrastructure (functionality) and the relationship of individuals and organizations with the built environment.

Performance Levels for After-Event Evaluations

Category	Infrastructure System Performance Standard
I	Resume 100% service within days
П	Resume 90% service within weeks and 100% within months
	Resume 90% service within months and 100% within years
1111	[1] 2019년 - 2019년 1월 2019년 - 1월 2019년 1 1월 2019년 - 2019년 1월 20

Disaster Resilience Framework 1.0

- The Disaster Resilience Framework 1.0 will focus on the role that buildings and infrastructure lifelines play in ensuring community resilience.
- The Framework will:
 - Establish types of performance goals and ways to express them
 - Identify existing standards, codes, and best practices that address resilience
 - Identify gaps that must be addressed to enhance resilience
 - Capture regional differences in perspectives on resilience
- The Disaster Resilience Framework will be informed through a series of stakeholder workshops.

Evacuation Basics

- TEMPORAL AND SPATIAL
- Hazard Characteristics
 - Scale (how "big?" -> How far to evacuate), Amount of advanced notice, Shelter-in-place options
- Evacuee Characteristics
 - Who are they? Where are they? How many? How mobile? Behavior (if/when will they leave?), What are their needs?
- Transportation Resources
 - Modes, Highway Transit, Traffic Control, Traffic Management
- Communications
- To/from, Across and between all levels, jurisdictions, agencies, and evacuees, Need for situational awareness

Photo Source: Lt. John Denholm Harris Co. (TX) Sheriff's Office

Photo Source: Yi-Chang Chiu, University of Arizona

Recent History in Louisiana

Gulf Coast Center for Evacuation and Transportation Resiliency

Recent History in Louisiana

- Prior to Hurricane Georges in 2000, there was no regional traffic management plan in LA
- No "designated" evacuation routes
- 1st plan was developed in 2000 and included contraflow in New Orleans
- Used for the first time in 2004 for Hurricane Ivan with questionable results
- "Revised plan" was developed in 2004-2005 and implemented for the first time for Hurricane Katrina
- Evacuation was quite effective for those with the desire and means to evacuate
- Plans for the evacuation of low-mobility populations were obviously "lacking"

Problems Identified in Ivan

- An over-reliance on the westward movement of traffic
- Confluence congestion created by the confluence of major evacuation routes in Baton Rouge, Hammond, Lafayette, Covington, and Slidell
- Inefficient loading of contraflow in New Orleans
- Inability to access up-to-date traffic information and provide timely and accurate traveler information to evacuees

New Orleans Contraflow Initiation Point

Hurricane Ivan Evacuation - Interstate 10 (west of New Orleans)

Total Traffic Volumes for Evacuation WB I-10 at Loyola Dr 09/13/04 - 09/15/04

Figure Source: LaDOTD

Total Traffic Volumes and Speeds for Evacuation WB I-10 at Mississippi River Bridge 09/13/04 - 09/15/04

----I-10 WB Miss B Volume - - I-10 WB Miss B Speed

Figure Source: LaDOTD

Proposed Solutions

- Maximize the available routes out of the New Orleans area
- Improve the loading of contraflow segments in New Orleans
- Mitigate (eliminate?) the congestion in Baton Rouge
- Inability to access up-to-date traffic information and provide timely and accurate traveler information to evacuees

New Orleans Alternatives

<u>Scenario</u>	<u>12h volume at max. flow</u>	Evacuees moved	<u>Increase over no-c/f</u>
Ivan w/o contraflow	49,464 veh	123,660 people	
Ivan w/contraflow	67,224 veh	168,060 people	35.9%
I-10/I-610 Loading Plan	97,572 veh	243,930 people	<i>97.3%</i>

Baton Rouge Alternatives

Location	<u>Ivan – Speed</u>	Flow Rate	<u>w/Contraflow – Spe</u>	ed Flow Rate
1-12 (bef. interchange)	16 mph	2,834 vph	56 mj	oh 5,422 vph
I-110 (MS River Bridge)	28 mph	4,029 vph	22 mj	oh 4,399 vph
¹ I-110 (aft. interchange)	48 mph	2,067 vph	55 mj	oh 3,701 vph

The Plan and Its Effects

Gulf Coast Center for Evacuation and Transportation Resiliency

Duration of Evacuation Volume

Effect of Contraflow on Traffic Volume

Evacuation Traffic Control

Gulf Coast Center for Evacuation and Transportation Resiliency

Examples of Control Devices

Examples of Control Devices

Texas EVACULANE Shoulders

US 290 Houston to Hempstead

Examples of Control Devices

Variable Message Signs

Assisted Evacuations

Gulf Coast Center for Evacuation and Transportation Resiliency

"Low Mobility" Evacuees

- Individuals without personal transportation, elderly, infirm, tourists, economically disadvantaged, prisoners, homeless, etc.
- How many persons fit these description?
- Where are they located?
- Who are they and what are there needs? medicine, oxygen, dialysis, etc.
- Who is responsible for them if they are unable to take of themselves?
- Where do they go? How do they come back?

Evacuee Categorization

Problems of Low Mobility Evacuation Planning

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose
- Limited understanding and development of underlying behaviors of evacuation travel for different evacuee and mode types

Problems of Modeling Evacuation Transportation Plans

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose

Recognized Limitations

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose
- Limited understanding and development of underlying behaviors of evacuation travel for different evacuee and mode types

Evacuation Modeling

Gulf Coast Center for Evacuation and Transportation Resiliency

Evacuation Modeling Spectrum

From: "Structuring Modeling and Simulation Analyses for Evacuation Planning and Operations"

By: Hardy, Wunderlich, Bunchand, and Smith

Current Research

- Application of the TRANSIMS system
- Can be used to model very large geographical regions and large numbers of travelers
- Effort and expertise required to code and run
- Issues of verification, validation, and calibration
- Hardware and software requirements
- History, experience, and acceptance within the professional transportation community
- Not developed for the purpose of evacuation

Evacuation Traffic Simulation

- Has proven value
- Permits bottlenecks to be identified and potential solutions to be analyzed before they become problems
- Gives quantitative MOE results to decision-makers
- Allows effects of alternative strategies and adverse conditions to be assessed without consequence

Recognized Limitations

- Existing traffic/transportation simulation systems are not created to model evacuation conditions
 - Scale (e.g., number of vehicles)
 - Scope (e.g. duration, geographic area)
- Existing models do not permit the modeling and simulation of multiple modes of transportation simultaneously
- Most models are not able to give analysts the MOE's they'd like or decision-makers the answers to questions they pose
- Limited understanding and development of underlying behaviors of evacuation travel for different evacuee and mode types

TRANSIMS Project

Gulf Coast Center for Evacuation and Transportation Resiliency

TRANSIMS System

- Incorporates aspects of planning and operations
- Model large geographical regions and large numbers of travelers
- Model populations, travel activities, routing, and analyses it with a microsimulator
- Open source and available
- Effort and expertise required to code and run
- Issues of verification, validation, and calibration
- Hardware and software requirements
- History, experience, and acceptance within the professional transportation community
- Not developed for the purpose of evacuation

TRANSIMS Structure

- Network Input
 - Structure and characteristics of the transportation network (control, capacity, etc.) and activity locations
- Population Synthesizer
 - Creates a disaggregate synthetic population based on aggregate census zonal information
- Activity Generator
 - Travel surveys or observation of past evacuations
- Router
 - Spatial and temporal travel behavior and route assignments
- Microsimulator
 - Tracks and compiles movements and statistics of each agent (vehciles & peds)
- Visualizer
 - 3rd party developer Balfour Technologies Inc.

LSU Study - Approach

- Step 1 Network development
- **Step 2** "Base Model" validation and calibration based on 2005 Katrina evacuation
- Step 3 Code "New" New Orleans multimodal plan
- Step 4 "Base Model" validation and calibration based on 2005 Katrina evacuation
- Step 5 Code and test alternative plans and ideas

Cumulative Percentage of Total Evacuating Vehicles

Gulf Coast Center for Evacuation and Transportation Resiliency

Network Link 58296 (DOTD Station 54 -- 2 miles W of US 51/I-55 Jct)

Westbound I-10 Traffic Speed

Network Link 56039 (Near DOTD Station 67 -- 1 mile S of I-12 , I-59 Jct)

Speed

Network Link 57784 (DOTD Station 18 -- 1.1 miles E of O'Neal Ln Jct)

Speed

US 190 WESTBOUND Denham Springs@Amite River Bridge

Conclusions

- Evidence that TRANSIMS can be an effective tool for evacuation modeling and planning
- Constituent models can be useful in whole or when used separately
- Development of the TRANSIMS model has added benefits beyond evacuation
- User interface for coding and output results was cumbersome

Assisted Evacuation Modeling

Gulf Coast Center for Evacuation and Transportation Resiliency

Assisted Evacuations

- Evacuation planning has historically been targeted at persons with personal vehicles
- A substantial percentage of potential vulnerable populations do not have personal vehicles
- Plans to evacuate "carless" populations in many locations have been created relatively recently or are currently in development
- There have been few actual activations to gain knowledge and experience, nor tests, drills or simulations to evaluate potential weakness and needs

Study Questions

- Proof-of-Concept Can TRANSIMS be used for evacuation analysis? Are its results reasonable?
- Develop a variety and range of hazard-response scenarios
- How many buses might be needed under various scenarios? What routes should they take?
- Potential to estimate the number of location of evacuees
- Examine the potential of alternate plans

Research Methodology

- Model Development
 - Spatial distribution, loading, and temporal movements 40,000 assisted evacuees (including 10,000 tourists)
- Scenario Development (8 cases)
 - Routing: I-10 vs. US-61
 - Response "Urgency": 24, 32, 36, 48 hours
- MOE's
 - Total evacuation time and average travel time
- Develop and Evaluate Alternative Management Strategies
 - "Off-peak" movements
 - "Forced" routing

Evacuation Pick-Up Locations

SENIOR CENTER LOCATIONS

1. Arthur Mondy Center 1111 Newton Avenue, Algiers

2. Kingsley House 1600 Constance Street, Lower Garden District

3. Central City Senior Center 2020 Philip Street, Central City

4. Mater Dolorosa 1226 S. Carrollton Ave, Carrollton

GENERAL POPULATION

5. Smith Library Bus Stop 6300 Canal Blvd., Lakeview

6. Palmer Park S. Claiborne and S. Carrollton, West Carrollton

7. McMain High School 5712 S. Claiborne Ave, Broadmoor

8. Lyons Community Center 624 Louisiana Ave, Irish Channel

9. Dryades YMCA 1924 Philip Street, Central City

10. Warren Easton High School 3019 Canal Street, Treme

11. Municipal Auditorium 801 N. Rampart, 7th Ward

12. O. Perry Walker High School 2832 General Meyer, Algiers

13. Stallings Community Center 4300 St. Claude, Bywater

14. Sanchez Center Caffin & N. Claiborne, Lower 9th Ward

15. Gentilly Mall Parking Lot Chef Menteur & Press Dr., Gentilly

16. Walgreen's Lake Forest & Read Blvd, NO East

17. Mary Queen of Vietnam 14001 Dwyer, New Orleans East

0	0.45	0.9	1.8 Miles
1	399.99	1000	11 PH 20 PH
1.1		- 352	

Jefferson Parish Bus Routes

Quantitative Results

Evacuation	Total Evacu	ation Time (hr)	Demonst Deduction	
Scenario	<i>I-10</i>	US-61	Percent Reduction	
A	34.95	32.79	6.2 %	
В	47.27	46.44	1.8 %	
С	29.89	25.76	13.8 %	
D	41.35	36.49	11.8 %	

Evacuation	Average Tra	Percent	
Scenario	<i>I-10</i>	US-61	Reduction
A	4.81	2.55	47.0 %
В	5.03	2.84	43.5 %
С	4.54	2.20	51.5 %
D	4.80	2.61	45.6 %

Conclusions

- Evidence that TRANSIMS is an effective tool for multimodal evacuation modeling and planning
- Constituent models can be useful in whole or when used separately
- Quantify Process and Evaluate Alternatives

Management Strategy	Total Evacuation Time	Average Travel Time
Off Peak Evacuation	45%	10%
Alternative Routing	14%	52%

Gulf Coast Center for Evacuation and Transportation Resiliency

National Study of Evacuation Pla

John L. Renne, Thomas W Todd Litma

The

of Transit in Emergency Funded by

SPECIAL RE

The **R**

of Tra

in Em

Evac

Produced by the Unit

SYNTHESIS 392

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Transportation's Role in Emergency Evacuation and Reentry

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

http://www.trb.org/

Florida Keys Evacuation Planning

Gulf Coast Center for Evacuation and Transportation Resiliency

Evacuation Planning in The Florida Keys: Unique Challenges and Emerging Knowledge

Brian Wolshon, Ph.D., P.E. Louisiana State University

Gulf Coast Center for Evacuation and Transportation Resiliency

2012 National Evacuation Conference

March 29, 2012

Discussion Topics

- Background on the unique nature of The Florida Keys and the challenges they present to evacuation
- Transportation network in The Keys
- Social and political concerns influencing evacuation
- Transportation analyses and emerging knowledge
- Applicability to other locations

Unique Nature of The Florida Keys

- High risk potential
- Effectively one route out
 - Susceptible to traffic and roadway incidents
 - Use of contraflow is problematic
- Approximately 80,000 resident and tourists evacuees
 - Highest concentration in the Lower Keys
- Long travel distance
- Potential effects of "mainland" traffic

(Map source: 2001 Florida Keys Hurricane Evacuation Study)

Unique Nature of The Florida Keys

- Designated as a Florida "Area of Critical State Concern"
 - Unique nature and value of the area makes The Keys important to the State as a whole
 - State, rather than local government, has authority over many key civil issues
- Evacuation
 - Must be able to undertake a full evacuation in 24 hours
- Growth and Development
 - New construction is limited by the ability to serve water, sewer, evacuation, etc.

Transportation Analysis History

- Long history of traffic analysis and modeling in The Keys
- 2001 Florida Keys Hurricane Evacuation Study (aka "The Miller Model")
 - Linear model of link flows
- More complex models as part of the Florida Statewide Study
- The models rely on estimates of roadway capacity

General Modeling Process

- Spatial and temporal generation of travel demand
 - Who leaves, when do they leave, where do they come from, where do the go, what route(s) do they take?
- What is the carrying capacity of the road network?
- What are the travel conditions?
 - Speed, travel time, delay, congestion
- Convert to a clearance time

Model Findings 2001

- 2001 Florida Keys Hurricane Evacuation Study
 - Examined clearance time under numerous scenarios including existing road configuration and various lane and intersection capacity improvements
- Existing (no-build) condition would result in an clearance time of 25hr 58min
- Through various improvements, it was suggested that this could be lowered to just under 19 hours
 - Lane additions where expected flow were highest Upper Keys
- FDOT implementing these improvements since

Research Findings

- Numerous major evacuations (1999 2008) afforded the opportunity to collect and analyze flow patterns and characteristics
- The observed data showed consistent patterns that actual flow during events were not consistent with prior assumptions
 - They also vary at different times
- Research suggests the use of "Maximum Sustainable Evacuation Traffic Flow Rates" for modeling and analysis

Maximum Sustainable Evacuation Traffic Flow Rates

- The anticipated highest vehicle flow rates that can be <u>practically</u> sustained over an extended period of time during an evacuation
- Although Maximum Sustainable Evacuation Traffic Flow Rates are similar to the "capacity" of the road segment, they are quite different
- They vary by segment and will also vary based on specific conditions that exist at the time of the event

Louisiana Observations

Northbound Evacuation (2-lane) Traffic Volume - US-61 LaPlace Louisiana

Westbound Evacuation (2-lane) Traffic Volume - US-190 (Mississippi River Bridge departure) Port Allen, Louisiana

Louisiana Observations

Westbound Evacuation (2-lane) Traffic Volume - US-190 (Mississippi River Bridge departure) Port Allen, Louisiana

Louisiana Observations

Westbound Evacuation (2-lane) Traffic Volume - US-190 Port Allen Louisiana

Florida Observations

Westbound SR-528 Traffic Volume Data

Florida Observations

Eastbound SR-528 Traffic Volume Data

Florida Keys Observations

Northbound US-1 Traffic Volume Data at Cow Key Bridge Hurricane Ivan (top) and Hurricane Frances (bottom)

Maximum Observed Flows

Event	Cow Key Bridge MM 4 (vphpl)	Big Pine Key MM 28 (vphpl)	Key Largo MM 106 (vphpl)
Hurricane Charley	1,125*	1,100*	725*
Hurricane Francis	800*	595*	450*
Hurricane Ivan	600*	810*	625*
Hurricane Wilma	650*	590*	650*
Hurricane Dennis	650*	1,180*	748*
Trop. Storm Fay	855	1,030	874
Trop. Storm Ike	584	680	502
Highest Hrly Vol. of 2010	1,092	1,066	903
2 nd Highest Hrly Vol. 2010	1,061	1,065	869
3 rd Highest Hrly Vol. 2010	1,058	1,063	849
4 th Highest Hrly Vol. 2010	1,055	1,059	824
Maximum Sustainable Evacuation Traffic Flow Rates	900 – 1,100	1,050 - 1,100	900 - 1,200

* Denotes approximate value based on graphical data

	N/lile	arkers	Location/Description	Year 2,010	orida Keys, Monroe County, Florida	
Area	From	То		Configuration	Suggested Maximum Sustainable Evacuation Flow Rate per Hour per Lane	
ower Keys	2.0	4.0	Key West to Stock Island	4L	900	
ower Keys	4.0	9.0	Stock Island to Big Coppitt Key	4LD	900	
ower Keys	9.0	17.0	Big Coppitt Key to Sugarloaf Key	2L	1,100	
ower Keys	17.0	22.0	Sugarloaf Key to Cudjoe Key	2L	1,100	
Lower Keys 22.0			Cudjoe Key to Summerland Key Cove		_,	
	22.0 24.0	24.0	Airport	2L	1,100	
	24.0	25.0	Summerland Key Cove Airport to Summerland Key	3L	1 100	
ower Keys				3L 2L	1,100	
ower Keys	25.0	30.0	Summerland Key to Big Pine Key Big Pine Key to West Summerland Keys	2L 2L	1,100	
ower Keys	30.0	34.0	Vest Summerland Keys to Spanish	ZL	1,050	
ower Keys	34.0	35.2	Harbor Keys	2L	1,100	
		Spanish Harbor Keys to Bahia Honda		_,		
ower Keys	35.2	36.5	Bridge	4LD	1,100	
ower Keys	36.5	37.5	Bahia Honda Bridge to Bahia Honda Key	2L	1,100	
/iddle Keys	37.5	47.0	Bahia Honda Key to Hog Key	2L	1,200	
/liddle Keys	47.0	48.0	Hog Key to Boot Key	2L	1,100	
/iddle Keys	48.0	50.2	Boot Key to Marathon	4L	900	
/iddle Keys	50.2	50.8	Marathon to Marathon Shores	5L	900	
∕liddle Keys	50.8	54.0	Marathon Shores to Key Colonial Beach	4LD	900	
/iddle Keys	54.0	54.5	Key Colonial Beach to Deer Key	4LD	900	
/iddle Keys	54.5	58.0	Deer Key to Grassy Key	2L	1,100	
Jpper Keys	58.0	74.0	Grassy Key to Matecumbe Harbor	2L	1,100	
Jpper Keys	74.0	80.0	Matecumbe Harbor to Teatable Key	2L	1,100	
Jpper Keys	80.0	83.5	Teatable Key to Islamorada	3L	1,100	
Jpper Keys	83.5	85.6	Islamorada to Windley Key	2L	1,100	
Jpper Keys	85.6	90.0	Windley Key to Plantation Key	2L	1,100	
Jpper Keys	90.0	100.0	Tavernier Key to Newport Key	4LD	900	
Jpper Keys	100.0	105.0	Newport Key to Sexton Cove	4LD	900	
Jpper Keys	105.0	106.3	Sexton Cove to Rattlesnake Key	4LD	900	
Jpper Keys	106.3	126.5	Rattlesnake Key to Card Sound Rd	2L/4L	1,200	
South Dade	126.5	HEFT	Card Sound Rd to HEFT	4LD	900	
Jpper Keys	106.3	Int CR 905 / CR 905 A	Lake Surprise to Crocodile Lake	2L	1,100	
Jpper Keys	Ocean Reef	Int CR 905 / CR 905 A	Tanglefish Key to Crocodile Lake	2L	1,100	
Upper Keys	Int CR 905 / CR 905 A	US 1	Crocodile Lake to South Miami-Dade	2L	1,100	

LEGEND

2L Two-lane facility

Г

- 2L/4L Two lanes with short four-lane sections for passing purposes
 - 3L Three-lane facility (center lane is a two-way left-turn lane)
 - 4L Four-lane undivided facility
 - 4LD Four-lane divided facility
 - 5L Five-lane facility (center lane is a two-way left-turn lane)

Model Findings - 2010

- 2010 Statewide Regional Evacuation Study Program Models
 - More than 30 scenarios
 - Using FDOT recommended MSETFR's
- Will be used by the State of Florida to set policy
- Enormous range of clearance times from 12 -47 hours, based on amount of population, behavioral response, downstream traffic, etc., etc., etc.
 - Comparable assumptions to 2001 (using MSETFR's is now about 26 hours)

Conflicting Concerns and Needs

- Improvements would be needed most in Upper Keys to serve Lower/Middle Keys populations
- Additional road capacity would bring more traffic, diminishing the quality of life and the existing nature of The Keys
- Building prohibitions would amount to government "takes" of private property, involving of hundreds of millions
- Compromise?

Current Research

Gulf Coast Center for Evacuation and Transportation Resiliency

Behavioral Modeling

Forecast time-dependent evacuation demand

2-hour time intervals

Regional-Level Modeling and Visualization

Scenario Testing and Evaluation

Analysis of "variable" hazards and responses

- Temporal
 - More/less time to evacuate
 - implementation of phasing strategies
- Spatial
 - Storm size and direction of approach
 - network management

Future Modeling

- Police enforcement control
- MegaRegion evacuation network analysis

Acknowledgements

- Financial support for this project provided by the United States Department of Transportation through the Federal Highway Administration's Transportation Model Improvement Program
- Additional technical support provided by the New Orleans Regional Planning Commission, Louisiana Department of Transportation and Development, Louisiana State University, and the LSU-UNO UTC
- Continuing work is currently being funded by the United Stated Department of Homeland Security through the DHS Centers of Excellence Program

Acknowledgements

- Financial support for research provided by the United States Department of Transportation through the Federal Highway Administration's University Transportation Centers Program
- Technical assistance and data provided by:
 - Florida Department of Transportation, District Six
 - TrafTech Engineering, Inc.
 - Stanley Consultants, Inc.