

OVERVIEW OF THE STATE'S COASTAL MASTER PLAN AND ITS IMPORTANCE TO NEW ORLEANS

Karim Belhadjali, Coastal Protection and Restoration Authority

Feb 25, 2015 Gothenburg – New Orleans City Exchange on Disaster Risk Reduction

Coastal Protection and Restoration Authority

Single state entity with authority to articulate a clear statement of priorities to achieve comprehensive coastal protection for Louisiana.

Mandate is to develop, implement, and enforce a comprehensive coastal protection and restoration Master Plan.

Louisiana's National Role

Ports - Cargo

- Top tonnage port in the nation
- Five of the top 15 tonnage ports in the US
- One of the largest cargo port complexes in the world
- 19 percent of all domestic waterborne commerce
- Over 30 states depend upon Louisiana's ports for imports and exports.....

Annual Tons of Freight by Water

9

U.S. Department of Transportation Federal Highway Administration Office of Freight Management and Operations Freight Analysis Framework Total Combined Truck Flows (1998)

NEW YORK

9

U.S. Department of Transportation Federal Highway Administration Office of Freight Management and Operations Freight Analysis Framework Total Combined Truck Flows (1998)

LOS ANGELES

U.S. Department of Transportation Federal Highway Administration Office of Freight Management and Operations Freight Analysis Framework Total Combined Truck Flows (1998)

HOUSTON

U.S. Department of Transportation Federal Highway Administration Office of Freight Management and Operations Freight Analysis Framework

Total Combined Truck Flows (1998)

NEW ORLEANS

Network Flows	BEA to State Flows
(Tons)	(Tons)
0 - 2,000,000 2,000,000 - 5,000,000 5,000,000 - 10,000,000 10,000,000 - 25,000,000 More Than 25,000,000	0 - 1,000,000 1,000,000 - 3,000,000 3,000,000 - 9,000,000 More Than 9,000,000

U.S. Department of Transportation Federal Highway Administration Office of Freight Management and Operations Freight Analysis Framework Total Combined Truck Flows (1998)

LOUISIANA

Seafood and Wildlife

- #1 producer in fisheries in the Lower 48 States
- #2 producer of oysters
- #1 producer of blue crabs
- #1 producer of crawfish
- #1 producer of shrimp
- #1 habitat for migratory waterfowl and songbirds

Ecosystem Services

- Five million waterfowl
- 25 million songbirds
- America's largest wintering habitat for migratory waterfowl and songbirds
- 70 rare, threatened, or endangered species
- Top source of wild seafood in the continental United States
- Wetlands serve as part of the hurricane protection system

Gulf of Mexico-Energy

Deepwater Horizon Well Site

Strategic Petroleum Reserves

Natural Gas Market Center Hubs

2017 Coastal Master Plan

Natural Gas Processing Facilities

Active Offshore Oil/Gas Platforms

Coastal Louisiana: oil & gas infrastructure

Off-Shore Platforms

>-5 0 5

10 15 20 25 30 35 40+

Pipelines

Sustainable? Our Coastal Crisis

2017 Coastal Master Plan

Mississippi River Watershed

- Two-thirds of the continental United States
- 42% of the contiguous land mass of North America

Mississippi River and Tributaries

المراجع المراجع

Main Causes of Land Loss

- Levees/Dams
- Subsidence
- Sea-level Rise
- Hurricanes
- Oil and Gas Infrastructure
- **Oil Spill**

Louisiana is Experiencing a Coastal Crisis

1,883 square miles lost since the 1930s (4,877 sq. km)

Currently losing over **16** square miles per year (41 sq. km)

Land Area Change in Coastal LA 1932 – 2010 SURVEY THE SCENE

Historic Land-Water Change from 1932-2010 Approx. 1,900 sq. mi. (492,100 ha.) Couvillion et al (USGS), 2011

2017 Coastal Master Plan

Terrebonne Land/Water Change 1988-2005

HOW BAD IS IT – Future Without Action

More Extreme- Potential to lose an additional 1,765 square miles (4,571 sq. km) of land over the next 50 years.

Utilized 0.45 m of sea level rise over 50 years, Subsidence rates 0 to 25 mm per year

Our Coastal Crisis Will Continue

With No Action Over the Next 50 Years

2017 Coastal Master Plan

Increasing Vulnerability to Livelihoods

2017 Coastal Master Plan

-

2017 Coastal Master Plan

Responding to the Crisis

- **2005** Hurricanes Katrina and Rita
 - CPRA Board Established
- 2007 Original Master Plan Developed
- 2008 Hurricanes Gustav and Ike
- **2009** CPRA Implementation Office Established
- **2010** Deepwater Horizon Oil Spill
- **2011** Mississippi River High Water Event
- **2012** Master Plan Updated

Louisiana's Coastal Master Plan

2017 Coastal Master Plan

Coastal Master Plan

Guiding document of CPRA and our efforts to protect and restore the Louisiana coast.

Revised every 5 years.

Timeline of Coastal Planning in Louisiana

Mississippi River Saving Coastal Sediment, Nutrient, Louisiana: and Freshwater Recommendations for **Distribution Study** Implementing an (CWPPRA) Expanded Coastal **Restoration Program**

Acres 14 Ecosystem Restoration Study

2004

(LCA)

A New Framework of Defense for Planning the Strategy to Future of Coastal Sustain Coastal Louisiana After the Hurricanes of 2005

Drawing Coastal Louisiana's New Map: Addressing Land Loss in Coastal Louisiana (LDNR & EPA)

The Multiple Lines Envisioning the Future of the Gulf Coast (America's WETLAND)

Mississippi River Gulf Outlet (MRGO) Channel Restoration and Mitigation Plan and Addendum

2007

Louisiana's Comprehensive Master Plan for a Sustainable Coast (CPRA)

Louisiana Sneaks

(Louisiana Recovery

Regional Plan

Authority)

Louisiana

Louisiana Coastal Protection and Restoration (LACPR)

Louisiana Coastal Area, Louisiana Ecosystem Restoration (CPRA USACE)

Louisiana's Sustainable Coast (CPRA)

Comprehensive Master Plan for a

2012

terrer.

Contract Competences

2014

An Environmental-Economic Blueprint for Restoring the Louisiana Coastal Zone: The State Plan

2009

The State of Louisiana's Policy for Coastal Restoration Activities

2010

Building on the 2007 Master Plan

2012 Coastal Master Plan

- Built on world class science and engineering
- Evaluated hundreds of existing project concepts
- Incorporated extensive public input and review
- Resource constrained

- Funding, water, sediment

 Identified investments that will pay off, not just for us, but for our children and grandchildren

Master Plan Objectives

Flood Protection

Reduce economic losses from storm-based flooding Natural Processes

Promote a

sustainable

ecosystem by

harnessing the

processes of the

natural system

Coastal Habitats

Provide habitats suitable to support an array of commercial and recreational activities coast wide Cultural Heritage

Sustain Louisiana's unique heritage and culture Working Coast

Support regionally and nationally important businesses and industries

Evaluation of Hundreds of Existing Projects

2017 Coastal Master Plan

Restoration Projects

Marsh Creation

Barrier Island Restoration

Hydrologic Restoration

Oyster Barrier Reefs

Shoreline

Protection

Bank Stabilization

Channel Realignment

Sediment Diversion

Protection Projects: Structural Protection Projects

Earthen Levee

Concrete Wall

Floodgate

Pumps

Protection Projects: Nonstructural Protection Projects

Elevated Housing

Floodproofing

Voluntary Acquisition

Using New Tools, Breaking New Ground

2017 Coastal Master Plan

Coastal Louisiana Risk Assessment (CLARA) Model Estimates Economic Damage from Coastal Flooding

Estimates flood depths across the coast

Determines direct economic damage

- Builds on post-Katrina flood modeling efforts
 - LACPR
 - IPET Risk and Reliability
 - FEMA HAZUS-MH

Provides balanced resolution for future risk estimates

- Estimates damage reduction from many structural and nonstructural options
- Considers many scenarios

CLARA Proceeds in Three Calculation Steps

Statistical Pre-Processing Module

Flood Depth Module

Economic Module

Damage Dollars

Damage is estimated for the following types of assets:

- single-family residences
- manufactured homes
- small multifamily residences (e.g., duplex, triplex)
- large multifamily residences (e.g., apartment building, condominium)
- commercial properties
- industrial
- public facilities
- transport infrastructure (e.g., roads, bridges, rail)
- vehicles
- agriculture structures and properties
- agricultural crops

Risk Reduction Projects Evaluated Using CLARA Included Structural Projects...

- Earthen levees
- Concrete T-walls
- Floodgates
- Pumps

...and Non-Structural Projects

Elevation Floodproofing Voluntary acquisition

Predictive Models Team

Predictive Model	Lead
Ecohydrology	Ehab Meselhe, PhD, PE, ULL + 9 members
Vegetation	Jenneke Visser, PhD, ULL + 8 members
Wetland Morphology	Greg Steyer, PhD, USGS + 6 members
Barrier Island Morphology	Mark Kulp, PhD, UNO + 6 members
Ecosystem Services	Andy Nyman, PhD, LSU + 8 members
Storm Surge	Joe Suhayda, PhD, Arcadis + 3 members
Storm Damage/Risk	Jordan Fischbach, PhD, RAND + 7 members
Data Integration	Craig Conzelmann and USGS team
Uncertainty Analysis	Emad Habib, PhD, ULL
Technical Advisor	Denise Reed, PhD, UNO

Future Scenarios

Factors Accounted for by Our Scenarios

- Sea Level Rise
- Subsidence
- Storm Intensity
- Storm Frequency
- River Discharge / Sediment Load
- River Nutrient Concentration
- Rainfall
- Evapotranspiration
- Marsh Collapse Threshold

Variation in Sea Level Rise (Eustatic)

Estimates of Sea Level Rise over Next 50 Years

On-going analysis is incorporating new research and evaluating a scenario of 0.78 m over 50 years

Variation in Subsidence Rates

Subsidence Advisory Panel Members: Louis Britsch, PhD, PG, USACE-MVN; Roy Dokka, PhD, LSU; Joseph Dunbar, PG, USACE-ERDC; Mark Kulp, PhD, UNO; Michael Stephen, PhD, PG, CEC; Kyle Straub, PhD, Tulane; Torbjorn Tornqvist, PhD, Tulane

The Analytical Challenge

- Complex coastal environment
 - Wetlands, bays, barriers/Rural, urban, industry
- Planning horizon
 - 50 years need to consider change over time
- Multiple future scenarios
- Projects
 - 210 restoration projects
 - 34 Structural protection projects
 - 112 Non-structural protection projects
- Diverse community needs, competing stakeholder preferences

There is No Optimal Solution – Tough Decisions Must Be Made

- Risk reduction
- Use of river diversions
- Near term benefits

Restoration

- Maintenance of current salinity gradients
- Long term sustainability

The Planning Tool Is a Computer-Based Decision Support Tool

- 1. Compares and ranks individual projects
- 2. Develops different combinations of projects for comprehensive strategy
- 3. Uses interactive visualizations to display tradeoffs and support decision making

Key Decision Points

- Flood Risk Reduction and Land Building as Decision Drivers
- Funding Allocation \$50 Billion, 50/50 split
- Near Term and Long Term Benefits 50/50 split
- Selecting Projects for an Uncertain Future
- Use of Decision Criteria and Ecosystem Services
- Land Building Experiments

Explored Funding Scenarios and Allocation Between Risk Reduction and Restoration Projects

Evaluated Balance Between Near Term and Long Term Benefits

Planning Tool Evaluates Hundreds of Restoration and Risk Reduction Projects

- 96 Other restoration
- 34 Structural risk reduction
- 112 Non-structural risk reduction

Implementing all projects would cost more than \$200 billion

Planning Tool Compares Individual Projects Near and Long Term Land

Project Name	Project Type									
Pass a Loutre Channel Realignment with Up River Diversions	Channel re-alignment									
Pontchartrain-Barataria Multi-Diversion Plan	Diversion									
Up River Reallocation (80/20)	Channel re-alignment									
Up River Reallocation (90/10)	Channel re-alignment									
Up River Reallocation (50/50)	Channel re-alignment									
Mid-Barataria Diversion (250,000 cfs- 2nd Increment)	Diversion									
Upper Breton Diversion (250,000 cfs)	Diversion									
Down River Reallocation (10/90)	Channel re-alignment									
Hermitage Diversion (250,000 cfs Seasonally Operated)	Diversion									
Mid-Barataria Diversion (250,000 cfs)	Diversion									
Biloxi Marsh Creation	Marsh Creation									
Lower Barataria Marsh Creation	Marsh Creation									
Mid-Barataria Diversion (50,000 cfs- 1st Increment)	Diversion									
Golden Meadow-Montegut Marsh Creation	Marsh Creation									
West Pointe a la Hache Diversion (250,000 cfs)	Diversion									
Up River Reallocation (10/90)	Channel re-alignment									
Dulac-Cocodrie Marsh Creation	Marsh Creation									
Down River Reallocation (50/50)	Channel re-alignment									
Large-Scale Barataria Marsh Creation	Marsh Creation									
North Terrebonne Bay Marsh Creation	Marsh Creation									
East Maurepas Diversion (5,000 cfs)	Diversion	•								
Bonnet Carre Diversion (5,000 cfs)	Diversion	1								
Humble Canal Hydrologic Restoration	Hydrologic Restoration									
Mermentau River Hydrologic Restoration	Hydrologic Restoration									
Central Wetlands Diversion (50,000 cfs)	Diversion	-								
		0	20	40	60	80	100	120	140	160
					Change in Land	d Area [sq i	mi]			

Near Term Land (Year 20)

Long Term Land (Year 50)

2017 Coastal Master Plan

Group 20	001.DI.17	Diversion	Caernarvon Diversion: 250,000 cfs capacity
			(70% Mississippi/30% Atchafalaya)

10 times average discharge of Göta River (575 m³/s)

Operation at capacity when Mississippi River exceeds 900,000 cfs; operation at 50,000 for flows from 900,000 cfs to 600,000 cfs; operation at 8% of river flow for river flows from 600,000 cfs down to 200,000 cfs, no operation below 200,000 cfs

Year 50 Change in Percent Land Compared to FWOA

Scenario B

Grounded in Science

Planning Tool Assembles Different Project Combinations to Meet Louisiana's Objectives

• Uses constrained mixed integer program to select combinations of projects that maximize land building and risk reduction

<u>Objective Function</u>:

Let d_j represent the weight for decision criterion j. $Max [d_1(Alternative Near-term Reduction in EAD) + d_2(Alternative Long-term Reduction in EAD) + d_3(Alternative Near-term Coast wide Land Area) + d_4(Alternative Long-term Coast wide Land Area)]$

Planning Tool Assembles Different Project Combinations to Meet Louisiana's Objectives

• Choices are constrained by funding, available sediment, and river flow

 $\sum_{p_e} \sum_i (\text{Cost}_{p_e,i,t} \times x_{p_e,i}) \leq \text{Restoration Funding}_t, \text{ for all values of t} (\forall t)$

 $\sum_{p_r} \sum_i (\text{Cost}_{p_r,i,t} \times x_{p_r,i}) \le \text{Risk Reduction Funding}_t, \quad \forall t$

 $\sum_{p_e} \sum_i \left(\text{Sediment Required}_{p_e, i, t, s} \times x_{p_e, i} \right) \leq \text{Sediment Available}_{t, s}, \quad \forall \ t, s$

 $\sum_{p_e} \sum_i (\text{River Flow Diverted}_{p_e,i,z} \times x_{p_e,i}) \leq \text{River Flow}_z, \forall z$

 $\sum_{p_e} \sum_i (\text{River Reach Indicator}_{p_e,k} \times x_{p_e,i}) \leq \text{Allowable Number of Diversions}_k, \forall k$

Louisiana's 2012 Coastal Master Plan

Max Land/Max Risk Alternative

Coast-wide Trends in Land Area Under FWOA and Future With Alternative: Moderate Scenario

Planning Tool Assembles Different Project Combinations to Meet Louisiana's Objectives

• Combinations balance ecosystem health, navigation, and other coastal interests

 $\sum_{p} \sum_{i} (Metric_{p,i} \times x_{p,i}) \ge Performance Threshold$

Coastal habitats

 $\sum_{p} \sum_{i} (\text{Decision Criterion Score}_{p,i} \times x_{p,i}) \ge \text{Performance Threshold}$

Decision Criteria

Coast-wide Trends in Land Area Under FWOA and Future With Alternative: Moderate Scenario

Science and Engineering Board

Ecosystem Science / Coastal Ecology

- William Dennison, PhD, University of Maryland
- Edward Houde, PhD, University of Maryland
- Katherine Ewel, PhD, University of Florida

Engineering

- Robert Dalrymple, PhD, PE, Johns Hopkins University
- Jos Dijkman, MsC, PE, Dijkman Delft

Geosciences

• Charles Groat, PhD, University of Texas at Austin

Social Science and Risk

- Greg Baecher, PhD, PE, University of Maryland
- Philip Berke, PhD, University of North Carolina Chapel Hill

Climate Change

• Virginia Burkett, PhD, U.S. Geological Survey

Environmental/Natural Resource Economics

• Edward Barbier, PhD, University of Wyoming

Technical Advisory Committees

Predictive Models

- Steve Ashby, PhD, USACE Eng. Res. Dev. Center
- John Callaway, PhD, University of San Francisco
- Fred Sklar, PhD, South Florida Water Mgmt. District
- Si Simenstad, MS, University of Washington

Planning Tool

- John Boland, PhD, PE, John Hopkins
- Ben Hobbs, PhD, John Hopkins
- Len Shabman, PhD, Virginia Tech

Cultural Heritage

- Don Davis, PhD, Louisiana State University
- Maida Owens, LA Dept. of Culture, Recreation, and Tourism
- Carl Brasseaux, PhD, University of Louisiana Lafayette

Grounded in Science

Responsive to the Needs of Our Coastal Communities

Outreach and Engagement Groups

Framework Development Team

Over 30 Federal, State, NGO, Academic, Community, and Industry Organizations

Focus Groups

- Key industries are impacted by land loss and large scale protection and restoration efforts
- Created three focus groups:
 - Navigation
 - Fisheries
 - Oil and Gas
- Expanding membership to:
 - Landowners
 - Community groups

Extensive Public Outreach and Review

- → Meetings with Fisheries, Oil and Gas, and Navigation Focus Groups
- Presentations to the CPRA and Governor's Advisory Commission for Coastal Protection, Restoration, and Conservation
- Framework Development Team members representing community, industry, federal, state, NGO, and academic organizations
- Presentations to civic, business, non-profit, and other professional groups
- → Attendees at regional community meetings

600

10

16

15

60

116

Extensive Public Outreach and Review

Louisiana's 2012 Comprehensive Master Plan for a Sustainable Coast

A Closer Look: Southeast Coast

Keystone of the 2012 Master Plan: Reconnecting the River

Keystone of the 2012 Master Plan: Reconnecting the River

The projects in the plan would use up to 50% of the Mississippi River's peak flow for sediment diversions, in addition to using water and sediment from the Atchafalaya River.

What the Master Plan Delivers

Potential Expected Annual Damages from Flooding at Year 50

What the Master Plan Delivers

Potential Annual Rates of Land Change Over the Next 50 Years

What the Master Plan Delivers

2061: Future Wandesseri Han

Implementing the Plan

Since 2007, we have

26,000+ acres of land benefitted250+ miles of levee improved45 miles of barrier islands constructed95.4 million cubic yards of fill placed

\$18B secured for restoration and protection projects

Progress on the Ground Projects 2007-present

Progress on the Ground Projects 2007-present

Protection Projects

Restoring Barataria Basin

BEFORE AND AFTER

Chaland Headland

Sept 2008

BEFORE AND AFTER

Shell Island East

May 2013

Dec 2013

BEFORE AND AFTER

Scofield Island

Nov 2012

Caminada Headland Beach and Dune Restoration – Increment I January 2014

103

Caminada

Caminada Headland Beach and Dune Restoration INCR 2

Status: Headed to Construction

Estimated Project Cost: \$147M

2017 Coastal Master Plan

OF

Long Distance Sediment Pipeline & Bayou Dupont June 2014

Long Distance Sediment Pipeline & Bayou Dupont January 2015

Major Components

- Levees
- Floodwalls
- Pump Stations
- Sector Gates & Barge Gates
- Locks

Role of CPRA

- Design and Review
- Construction Oversight & Review
- Levee Inspections
- Emergency Response Teams

Flood Protection GIWW West Closure Complex

IHNC Lake Borgne Surge Barrier

Projected FY16 Expenditures

By Project Phase

Construction (\$503 million)

Engineering and Design (\$73.7 million)

Planning (\$25 million)

Operation, Maintenance and Monitoring (\$99.3 million)

Ongoing Programs and Initiatives (\$35.1 million)

Operating Costs (\$37.6 million)

Construction includes Beneficial Use (\$4 million)

OM&M includes BIMP (\$361,000), Repair/Rehabilitation of Projects (\$1.1 million), Marine Debris Removal (\$1.6 million), and Isaac Beach and Dune Recovery (\$45.8 million)

Ongoing Programs includes Project Support (\$4.1 million)

Total Expenditures \$773 Million

Projects Scheduled for Construction in FY16

2012 Coastal Master Plan Freshwater and Sediment Diversions

Mississippi Sediment Diversions Building On What We Know

Mississippi River Sediment Diversions: Process

Center for River Studies The Water Campus

Implementing the Master Plan Monitoring and Reporting our Progress

- Continue and expand monitoring stations along the coast
- Modify tools based on on-going monitoring to help better predict future conditions
- Assess monitoring data, formalize feedback loops and triggers for modifications
- Expand monitoring to include Performance Measures that provide an indication of our progress toward achieving the objectives of the Master Plan
- Measure and report on project performance and system response

Systemwide Assessment & Monitoring Program*

Implementing the Master Plan Tackling Future Challenges

Implementing the Master Plan Adaptive Planning Built In

The Louisiana Legislature requires that the Master Plan be updated every five years with the latest science and technical information.

Advancements and Updates

- Implementation of the model improvement plan
- Potential for project list modification
- Public input and political acceptance
- Development of Flood Risk and Resilience Program
- Socio-economics and fisheries distribution analysis for areas in Breton, Barataria and Terrebonne

Advancing our Technical Analysis

Coastal Protection and Restoration Authority 450 Laurel Street, Baton Rouge, LA 70804 • coastal@la.gov • www.coastal.la.gov

2017 Coastal Master Plan

Model Improvement Plan

Report: Version II Date: August 2013, revised March 2014 Prepared By: The Water Institute of the Gulf

committed to our coast

2017 Model Improvement Plan Collaborative Team of over 70 Experts

AND RESTOR

CPR

PROTON STON

OPSTAL.

Modeling Decision Team

Directs and coordinates model improvements and analysis

THE WATER INSTITUTE OF THE GULF

2017 Model Improvement Plan Integrated Compartment Models (ICMs)

CLARA Model Improvement Plan

Model Updates for the 2017 Master Plan

- Expand study region further inland to reflect an expanding floodplain
- Develop a higher-resolution spatial unit of analysis
 - Previous: U.S. Census block centroids
 - New: At least 1x1 km grid
- Update
 - Data on individual structures/parcels (selected parishes)
 - Strategic assets and critical infrastructure
 - 2010 Census updates
- Validate CLARA with Hurricane Isaac flood and damage data

Geospatial Improvements Expanding the Study Region

Geospatial Improvements Developing a New Spatial Unit

• CLARA v1.0 included ~35K census block centroids

2000 US Census block centroids within 2012 max extent

Geospatial Improvements

Developing a New Spatial Unit

- CLARA v2.0 includes ~114,000 grid points
 - Note: ~90K points in LA, ~14K in MS, ~10K in TX

CLARA 2017 grid points

THANK YOU coastal.la.gov

Karim.Belhadjali@La.Gov